1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
use std::{
fmt::Debug,
iter::{Product, Sum},
ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign},
};
/// Base trait for fixed-size vector types.
pub trait SIMDBase<const N: usize>
where
Self: Into<Self::Underlying> + From<Self::Underlying>,
Self::Element: Copy,
{
/// Underlying intrinsic type or tuple of types.
type Underlying;
/// Type of a single element of packed vector.
type Element;
/// Number of elements in vector.
const N: usize = N;
/// Initializes all values of returned vector with a given value.
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(
/// Vec4f::broadcast(42.0),
/// [42.0; 4].into()
/// );
/// ```
///
/// # Note
/// Prefer using [`default`](Default::default) instead of [`broadcast`]-ing zero.
///
/// [`broadcast`]: SIMDBase::broadcast
fn broadcast(value: Self::Element) -> Self;
/// Loads vector from an array pointed by `addr`.
/// `addr` is not required to be aligned.
///
/// # Safety
/// `addr` must be a valid pointer to an [`N`](Self::N)-sized array.
///
/// # Example
/// ```
/// # use vrl::prelude::*;
/// let array = [42.0; 4];
/// let vec = unsafe { Vec4f::load_ptr(array.as_ptr()) };
/// ```
unsafe fn load_ptr(addr: *const Self::Element) -> Self;
/// Loads vector from a given array.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(
/// Vec4f::new(1.0, 2.0, 3.0, 4.0),
/// Vec4f::load(&[1.0, 2.0, 3.0, 4.0])
/// );
/// ```
#[inline]
fn load(data: &[Self::Element; N]) -> Self {
// SAFETY: data contains exactly N elements hence it's safe to load them
unsafe { Self::load_ptr(data.as_ptr()) }
}
/// Checks that `data` contains exactly [`N`] elements and loads them into vector.
///
/// # Panics
/// Panics if `data.len()` doesn't equal [`N`].
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(
/// Vec4f::load_checked(&[1.0, 2.0, 3.0, 4.0]),
/// Vec4f::new(1.0, 2.0, 3.0, 4.0)
/// );
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// Vec4f::load_checked(&[1.0, 2.0, 3.0]);
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// Vec4f::load_checked(&[1.0, 2.0, 3.0, 4.0, 5.0]);
/// ```
///
/// [`N`]: Self::N
#[inline]
fn load_checked(data: &[Self::Element]) -> Self {
if data.len() != Self::N {
panic!("data must contain exactly {} elements", Self::N);
}
// SAFETY: data contains exactly N elements hence it's safe to load them
unsafe { Self::load_ptr(data.as_ptr()) }
}
/// Loads first [`N`] elements of `data` into vector.
///
/// # Panics
/// Panics if `data` contains less than [`N`] elements.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(
/// Vec4f::load_prefix(&[1.0, 2.0, 3.0, 4.0, 5.0]),
/// Vec4f::new(1.0, 2.0, 3.0, 4.0)
/// );
/// ```
///
/// ```should_panic
/// # use vrl::prelude::*;
/// Vec4f::load_prefix(&[1.0, 2.0, 3.0]);
/// ```
///
/// [`N`]: Self::N
#[inline]
fn load_prefix(data: &[Self::Element]) -> Self {
if data.len() < Self::N {
panic!("data must contain at least {} elements", Self::N);
}
// SAFETY: data contains at least N elements hence it's safe to load the first N
unsafe { Self::load_ptr(data.as_ptr()) }
}
/// Stores vector into array at given address.
///
/// # Safety
/// `addr` must be a valid pointer.
unsafe fn store_ptr(self, addr: *mut Self::Element);
/// Stores vector into given `array`.
#[inline]
fn store(self, array: &mut [Self::Element; N]) {
// SAFETY: array has size of N elements hence it's safe to store the vector there
unsafe { self.store_ptr(array.as_mut_ptr()) }
}
/// Checks that `slice` contains exactly [`N`] elements and stores elements of vector there.
///
/// # Panics
/// Panics if `slice.len()` doesn't equal [`N`].
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// let mut data = [-1.0; 4];
/// Vec4f::default().store_checked(&mut data);
/// assert_eq!(data, [0.0; 4]);
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// let mut data = [-1.0; 3];
/// Vec4f::default().store_checked(&mut data);
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// let mut data = [-1.0; 5];
/// Vec4f::default().store_checked(&mut data);
/// ```
///
/// [`N`]: Self::N
#[inline]
fn store_checked(self, slice: &mut [Self::Element]) {
if slice.len() != Self::N {
panic!("slice must contain exactly {} elements", Self::N);
}
// SAFETY: slice has size of N elements hence it's safe to store the vector there
unsafe { self.store_ptr(slice.as_mut_ptr()) };
}
/// Stores elements of the vector into prefix of `slice`.
///
/// # Panics
/// Panics if `slice.len()` is less than [`N`](Self::N).
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let mut data = [-1.0; 5];
/// Vec4f::broadcast(2.0).store_prefix(&mut data);
/// assert_eq!(data, [2.0, 2.0, 2.0, 2.0, -1.0]);
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// let mut data = [-1.0; 3];
/// Vec4f::default().store_prefix(&mut data);
/// ```
#[inline]
fn store_prefix(self, slice: &mut [Self::Element]) {
if slice.len() < Self::N {
panic!("slice must contain at least {} elements", Self::N);
}
// SAFETY: slice has size of at least N elements hence it's safe to store the vector there
unsafe { self.store_ptr(slice.as_mut_ptr()) };
}
/// Extracts `index`-th element of the vector. Index `0` corresponds to the "most left"
/// element.
///
/// # Panic
/// Panics if `index` is invalid, i.e. isn't less than [`N`](Self::N).
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// let vec = Vec4f::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(vec.extract(2), 3.0);
/// ```
/// ```should_panic
/// # use vrl::prelude::*;
/// Vec4f::default().extract(5);
///
/// ```
///
/// # Note
/// If `index` is known at compile time consider using [`extract_const`](Self::extract_const).
#[inline]
fn extract(self, index: usize) -> Self::Element {
if index >= Self::N {
panic!("invalid index");
}
let mut stored = std::mem::MaybeUninit::<[Self::Element; N]>::uninit();
// SAFETY: `stored` has size of N hence it's safe to store the vector there
unsafe {
self.store_ptr(stored.as_mut_ptr() as *mut Self::Element);
stored.assume_init()[index]
}
}
/// Extracts `index % N`-th element of the vector. This corresponds to the original [`extract`]
/// function from VCL.
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(Vec4f::new(1.0, 2.0, 3.0, 4.0).extract_wrapping(6), 3.0);
/// ```
///
/// [`extract`]: https://github.com/vectorclass/version2/blob/f4617df57e17efcd754f5bbe0ec87883e0ed9ce6/vectorf128.h#L616
#[inline]
fn extract_wrapping(self, index: usize) -> Self::Element {
self.extract(index % Self::N)
}
/// Extracts `INDEX`-th element of the vector. Does same as [`extract`](Self::extract) with compile-time
/// known index.
///
/// # Examples
/// ```
/// # use vrl::prelude::*;
/// let vec = Vec4f::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(vec.extract_const::<2>(), 3.0);
/// ```
/// ```compile_fail
/// # use vrl::prelude::*;
/// Vec4f::default().extract_const::<5>();
/// # compile_error!("out-of-range index for extract_const")
/// ```
///
/// # Note
/// Currently not all implementations assures that `INDEX` is valid at compile time.
#[inline]
fn extract_const<const INDEX: i32>(self) -> Self::Element {
self.extract(INDEX as usize)
}
/// Calculates the sum of all elements of vector.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// assert_eq!(Vec4f::new(1.0, 2.0, 3.0, 4.0).sum(), 10.0);
/// ```
fn sum(self) -> Self::Element;
}
pub trait SIMDPartialLoad<T> {
/// Loads first `min(N, data.len())` elements of `data` into vector.
///
/// # Example
/// ```
/// # use vrl::prelude::*;
/// let values = [1.0, 2.0, 3.0, 4.0, 5.0];
/// assert_eq!(
/// Vec4f::load_partial(&values),
/// Vec4f::from(&values[..4].try_into().unwrap())
/// );
/// assert_eq!(
/// Vec4f::load_partial(&values[..2]),
/// Vec4f::new(1.0, 2.0, 0.0, 0.0) // note zeros here
/// );
/// ```
fn load_partial(data: &[T]) -> Self;
}
pub trait SIMDPartialStore<T> {
/// Stores `min(N, slice.len())` elements of vector into prefix of `slice`.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let mut data = [0.0; 3];
/// Vec4f::broadcast(1.0).store_partial(&mut data);
/// assert_eq!(data, [1.0; 3]);
/// ```
/// ```
/// # use vrl::prelude::*;
/// let mut data = [0.0; 5];
/// Vec4f::broadcast(1.0).store_partial(&mut data);
/// assert_eq!(data, [1.0, 1.0, 1.0, 1.0, 0.0]); // note last zero
/// ```
fn store_partial(&self, slice: &mut [T]);
}
pub trait SIMDFusedCalc {
/// Multiplies vector by `b` and adds `c` to the product.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let a = Vec4f::new(1.0, 2.0, 0.5, 2.0);
/// let b = Vec4f::new(1.0, 0.5, 2.0, 3.0);
/// let c = Vec4f::new(4.0, 2.0, 3.0, 1.0);
/// assert_eq!(a.mul_add(b, c), a * b + c);
/// ```
fn mul_add(self, b: Self, c: Self) -> Self;
/// Multiplies vector by `b` ans substracts `c` from the procuct.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let a = Vec4f::new(1.0, 2.0, 0.5, 2.0);
/// let b = Vec4f::new(1.0, 0.5, 2.0, 3.0);
/// let c = Vec4f::new(4.0, 2.0, 3.0, 1.0);
/// assert_eq!(a.mul_sub(b, c), a * b - c);
/// ```
fn mul_sub(self, b: Self, c: Self) -> Self;
/// Multiplies vector by `b` and substracts the product from `c`.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let a = Vec4f::new(1.0, 2.0, 0.5, 2.0);
/// let b = Vec4f::new(1.0, 0.5, 2.0, 3.0);
/// let c = Vec4f::new(4.0, 2.0, 3.0, 1.0);
/// assert_eq!(a.nmul_add(b, c), c - a * b);
/// ```
fn nmul_add(self, b: Self, c: Self) -> Self;
/// Multiplies vector by `b` and substracts the product from `-c`.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let a = Vec4f::new(1.0, 2.0, 0.5, 2.0);
/// let b = Vec4f::new(1.0, 0.5, 2.0, 3.0);
/// let c = Vec4f::new(4.0, 2.0, 3.0, 1.0);
/// assert_eq!(a.nmul_sub(b, c), -(a * b + c));
/// ```
fn nmul_sub(self, b: Self, c: Self) -> Self;
}
pub(crate) trait SIMDFusedCalcFallback {}
impl<T: SIMDFusedCalcFallback + Arithmetic + Neg<Output = Self>> SIMDFusedCalc for T {
#[inline]
fn mul_add(self, b: Self, c: Self) -> Self {
self * b + c
}
#[inline]
fn mul_sub(self, b: Self, c: Self) -> Self {
self * b - c
}
#[inline]
fn nmul_add(self, b: Self, c: Self) -> Self {
c - self * b
}
#[inline]
fn nmul_sub(self, b: Self, c: Self) -> Self {
-(self * b + c)
}
}
/// Commont floating-point functions.
pub trait SIMDFloat {
/// Rounds values of the vector to the nearest integers. In case of two integers are equally
/// close (i.e. fractional part of a number equals `0.5`) the behavior depends on platform.
///
/// # Exmaples
/// ```
/// # use vrl::prelude::*;
/// let vec = Vec4f::new(1.3, -3.7, 0.7, -0.3);
/// assert_eq!(vec.round(), Vec4f::new(1.0, -4.0, 1.0, 0.0));
/// ```
fn round(self) -> Self;
}
pub trait Arithmetic<Rhs = Self, Output = Self>:
Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
{
}
impl<T, Rhs, Output> Arithmetic<Rhs, Output> for T where
T: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
{
}
pub trait ArithmeticAssign<Rhs = Self>:
AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs>
{
}
impl<T, Rhs> ArithmeticAssign<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs>
{
}
/// Represents a packed vector containing [`N`] values of type [`Element`].
///
/// [`Default::default`] initializes all elements of vector with zero.
///
/// All arithmetic operations ([`Neg`], [`Add`], etc) are applied vertically, i.e. "elementwise".
///
/// # [`extract`] vs [`index`]
///
/// [`index`] (aka operator `[]`) extracts `index`-th element of the vector. If value of the vector is expected to be
/// in a register consider using [`extract`]. Use this function if only the vector is probably stored in memory.
///
/// In the following example the vector is stored in the heap. Using `[]`-indexing in
/// the case is as efficient as dereferencing the corresponding pointer.
/// ```
/// # use vrl::prelude::*;
/// # use std::ops::Index;
/// let many_vectors = vec![Vec4f::new(1.0, 2.0, 3.0, 4.0); 128];
/// assert_eq!(many_vectors.index(64)[2], 3.0);
/// ```
/// Here is an example of inefficient usage of [`index`]. The vector wouldn't even reach memory
/// and would stay in a register without that `[1]`. [`extract`] should be used instead.
/// ```
/// # use vrl::prelude::*;
/// let mut vec = Vec4f::new(1.0, 2.0, 3.0, 4.0);
/// vec *= 3.0;
/// vec -= 2.0;
/// let second_value = vec[1];
/// assert_eq!(second_value, 4.0);
/// ```
///
/// [`N`]: SIMDBase::N
/// [`Element`]: SIMDBase::Element
/// [`extract`]: SIMDBase::extract
/// [`index`]: Index::index
pub trait SIMDVector<const N: usize>:
SIMDBase<N>
+ Neg<Output = Self>
+ Arithmetic
+ ArithmeticAssign<Self>
+ Arithmetic<Self::Element>
+ ArithmeticAssign<Self::Element>
+ PartialEq
+ Into<Self::Underlying>
+ Into<[Self::Element; N]>
+ for<'a> From<&'a [Self::Element; N]>
+ SIMDPartialLoad<Self::Element>
+ SIMDPartialStore<Self::Element>
+ SIMDFusedCalc
+ Default
+ Copy
+ Clone
+ Debug
+ Index<usize>
+ IndexMut<usize>
+ Sum
+ Product
where
[Self::Element; N]: Into<Self>,
Self::Element: Arithmetic<Self, Self>,
Self::Underlying: Into<Self>,
{
}